Chapter 4: **NUMERICAL INTEGRATION**

FuSen Lin

Department of Computer Science and Engineering
National Taiwan Ocean University

Scientific Computing, Fall 2007
4 Numerical Integration

- 4.0 Introduction to Numerical Integration
- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics
- 4.5* Shared Memory Adaptive Quadrature
An m-point Quadrature rule Q for the definite integral

$$I = \int_a^b f(x) \, dx$$

is an approximation of the form

$$Q = (b - a) \sum_{k=1}^{m} \tilde{w}_k f(x_k) = \sum_{k=1}^{m} w_k f(x_k).$$

The x_k are the **abscissas** and the w_k are the **weights**. The abscissas and weights define the rule, called as **quadrature rule**, and are chosen so that $Q \approx I$.

Efficiency essentially depends upon the **number of function evaluations**.
Because the time needed to evaluate f at the x_i is typically much greater than the time needed to form the required linear combination of function values.

For instance, a six-point quadrature rule is twice as expensive as a three-point rule.

The quadrature rule can basically be classified into two families: the **Newton-Cotes rules** and **Gauss quadrature rules**.
The Newton-Cotes family of quadrature rules are derived by integrating *uniformly spaced polynomial interpolants* of the integrand. This means that to find a polynomial approximation $p(x)$ of the integrand $f(x)$ and integrate $p(x)$ so that

$$\int_a^b f(x) \, dx \approx \int_a^b p(x) \, dx$$

The m-point Newton-Cotes rule is defined by

$$Q_{NC}(m) = \int_a^b p_{m-1}(x) \, dx = h \sum_{k=1}^{m} c_k f(x_k)$$

where $p_{m-1}(x)$ interpolates $f(x)$ at

$$x_k = a + (k - 1)h, \quad h = \frac{b - a}{m - 1}, \quad k = 1 : m.$$
The Trapezoidal Rule

- If $m = 2$, then

$$f(x) \approx p_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a),$$

and thus we obtain the **trapezoidal rule**:

$$Q_{NC}(2) = \int_a^b p_1(x) \, dx = \int_a^b \left(f(a) + \frac{f(b) - f(a)}{b - a}(x - a)\right) \, dx$$

$$= (b - a) \left(\frac{1}{2}f(a) + \frac{1}{2}f(b)\right).$$

- In this rule the weights are $\tilde{w}_1 = \tilde{w}_2 = 1/2$.

The Simpson Rule

- If \(m = 3 \) and \(c = (a + b)/2 \), then

 \[
 f(x) \approx p_2(x) = \alpha x^2 + \beta x + \gamma \quad \text{or}
 \]

 \[
 p_2(x) = f(a) + \frac{f(c) - f(a)}{c - a}(x - a) + \frac{f(b) - f(c)}{b - c} - \frac{f(c) - f(a)}{c - a}(x - a)(x - c)
 \]

 and thus we obtain the Simpson rule:

 \[
 Q_{NC}(3) := \frac{b - a}{3} \left(f(a) + 4f\left(\frac{a + b}{2}\right) + f(b) \right).
 \]

- In this rule the weights are \(\tilde{w}_1 = 1/3, \tilde{w}_2 = 4/3, \) and \(\tilde{w}_3 = 1/3 \).
For general \(m \), we apply the Newton form of interpolating polynomial

\[
p_{m-1}(x) = \sum_{k=1}^{m} \left(c_k \prod_{i=1}^{k-1} (x - x_i) \right)
\]

to approximate \(f(x) \) and obtain the \(m \)-point Newton-Cotes Rule

\[
Q_{NC}(m) := \int_a^b p_{m-1}(x) \, dx = \sum_{k=1}^{m} c_k \int_a^b \left(\prod_{i=1}^{k-1} (x - x_i) \right) \, dx.
\]
If we set $x = a + sh$ (s be integer) then

$$Q_{NC}(m) := \int_{a}^{b} p_{m-1}(x)dx = h \int_{0}^{m-1} p_{m-1}(a+sh)ds = \sum_{k=1}^{m} c_k h^k S_{mk},$$

where

$$S_{mk} = \int_{0}^{m-1} \left(\prod_{i=1}^{k-1} (s - i + 1) \right) ds.$$
The c_k are **divided differences**. Because of the equal spacing, the divided differences c_k have a simple form in terms of $f_i = f(x_i)$, as was shown in Sec.2.4.1 (p.95). For example,

$$
\begin{align*}
 c_1 &= f_1 \\
 c_2 &= (f_2 - f_1)/h \\
 c_3 &= (f_3 - 2f_2 + f_1)/(2h^2) \\
 c_4 &= (f_4 - 3f_3 + 3f_2 - f_1)/(3!h^3)
\end{align*}
$$
Recipes for the S_{mk} can also be derived. Here are a few examples:

\[S_{m1} = \int_0^{m-1} ds = (m - 1) \]
\[S_{m2} = \int_0^{m-1} s \, ds = (m - 1)^2 / 2 \]
\[S_{m3} = \int_0^{m-1} s(s - 1) \, ds = (m - 1)^2(m - 5/2) / 3 \]
\[S_{m4} = \int_0^{m-1} s(s - 1)(s - 2) \, ds = (m - 1)^2(m - 3)^2 / 4 \]
Using these tabulations we can readily derive the weights for any particular \(m \)-point Rule. For example, if \(m = 4 \) then \(S_{41} = 3, S_{42} = 9/2, S_{43} = 9/2, \) and \(S_{44} = 9/4 \). Thus,

\[
Q_{NC}(4) = S_{41} c_1 h + S_{42} c_2 h^2 + S_{43} c_3 h^3 + S_{44} c_4 h^4
\]
\[
= \frac{3h}{8}(f_1 + 3f_2 + 3f_3 + f_4)
\]
\[
= \frac{(b - a)(f_1 + 3f_2 + 3f_3 + f_4)}{8}
\]

The weight vector for \(Q_{NC}(4) \) is \([1, 3, 3, 1]/8\).
For convenience in subsequent computations, we package the weight vectors of the Newton-Cotes Rules in the function `NCWeights.m`

Notice that the weight vectors are symmetric about their middle in that \(w(1 : m) = w(m : -1 : 1) \).

The evaluation of \(Q_{NC}(m) \) is a scaled inner product of the weight vector \(w \) and the vector of function values:

\[
Q_{NC}(m) = (b - a) \sum_{k=1}^{m} w_k f_k = (b - a) [w_1 \cdots w_m]
\]

We have the function `QNC.m` for \(2 \leq m \leq 11 \).
The errors of Newton-Cotes rules depend on the quality of polynomial interpolant. Here is an error bound of Simpson’s rule:

Theorem 4: If $f(x)$ and its *first four derivatives are continuous* on $[a, b]$, then

$$
\left| \int_a^b f(x) \, dx - Q_{NC}(3) \right| \leq \frac{(b-a)^5}{2880} M_4
$$

where M_4 is an upper bound of $|f^{(4)}(x)|$ on $[a, b]$.

Proof: Suppose

$$p(x) = c_1 + c_2(x-a) + c_3(x-a)(x-b) + c_4(x-a)(x-b)(x-c)$$

is the Newton form of the cubic interpolant to $f(x)$ at the points $a, b, c,$ and d.
Proof of Theorem 4 (1)

- If \(c \) is the midpoint of the interval \([a, b]\), then
 \[
 \int_{a}^{b} \left(c_1 + c_2(x - a) + c_3(x - a)(x - b) \right) dx = Q_{NC(3)},
 \]
 because the first three terms in the expression for \(p(x) \)
specify the quadratic interpolant of \((a, f(a)), (c, f(c)), (b, f(b))\), on which the three-point Newton-Cotes rule is based.

- By symmetry we have
 \[
 \int_{a}^{b} (x - a)(x - b)(x - c) dx = 0
 \]
 and so
 \[
 \int_{a}^{b} p(x) dx = Q_{NC(3)}
 \]
Proof of Theorem 4 (2)

- The error in $p(x)$ is given by Theorem 2 (p.90),

$$f(x) - p(x) = \frac{f^{(4)}(\eta_x)}{24}(x - a)(x - b)(x - c)(x - d)$$

and thus,

$$\int_{a}^{b} f(x)dx - Q_{NC}(3) = \int_{a}^{b} \left(\frac{f^{(4)}(\eta_x)}{24}(x - a)(x - b)(x - c)(x - d) \right) dx.$$

- Taking absolute values, we obtain

$$\left| \int_{a}^{b} f(x)dx - Q_{NC}(3) \right| \leq \frac{M_4}{24} \int_{a}^{b} |(x - a)(x - b)(x - c)(x - d)| dx.$$
If we set \(d = c \), then \((x - a)(x - b)(x - c)(x - d)\) is always negative and it is easy to verify that

\[
\int_{a}^{b} |(x - a)(x - b)(x - c)(x - d)| \, dx = \frac{(b - a)^5}{120}
\]

and so

\[
\left| \int_{a}^{b} f(x) \, dx - Q_{NC(3)} \right| \leq \frac{M_4 (b - a)^5}{24 \cdot 120} = \frac{M_4}{2880} (b - a)^5.
\]
For another proof, please see Numerical Analysis.

Note that if \(f(x) \) is a \textit{cubic} polynomial then \(f^{(4)}(x) = 0 \) and so Simpson’s rule is \textit{exact}. This is somewhat surprising because the rule is based on the integration of a \textit{quadratic} interpolant.
In general, it can be shown that

\[\int_{a}^{b} f(x) \, dx = Q_{NC(m)} + c_m f^{(d+1)}(\eta) \left(\frac{b - a}{m - 1} \right)^{d+2} \]

where \(c_m \) is a small constant, \(\eta \in [a, b] \), and

\[d = \begin{cases}
 m - 1, & \text{if } m \text{ is even,} \\
 m, & \text{if } m \text{ is odd.}
\end{cases} \]

Notice that if \(m \) is odd, such as Simpson’s rule, then an extra degree of accuracy results.

If \(|f^{(d+1)}(x)| \leq M_{d+1} \) on \([a, b]\), then

\[\left| \int_{a}^{b} f(x) \, dx - Q_{NC(m)} \right| \leq |c_m| M_{d+1} h^{d+2}, \quad h = \frac{b - a}{m - 1} \]
Open Newton-Cotes Rules

- The Newton-Cotes rules presented previously are actually the *closed* Newton-Cotes rules because $f(x)$ is evaluated at the *left and right endpoints*.
- The m-point *open* Newton-Cotes rule places the abscissas at $a + ih$ where $h = (b - a)/(m + 1)$ and $i = 1 : m$.
- The one-point open Newton-Cotes rule is called the **midpoint rule**.
- Note that for $m = 3, 5, 6, 7, \ldots$, the open rules involve *negative* weights, a feature that can *undermine the numerical stability* of the rule.
- The closed rules do not *go negative* weights until $m = 9$, making them a more attractive family of quadrature rules from this point of view. However, the open rules can be useful when f has *endpoint singularities*.
Composite Rules (1)

- The **Composite Newton-Cotes rules** are to partition the interval \([a, b]\) into \(n\) subintervals which are sufficiently small, and then apply \(Q_{NC}(m)\) to each subinterval.

- That means, if we have a partition

\[
a = z_1 < z_2 < \cdots < z_{n+1} = b,
\]

then

\[
\int_{a}^{b} f(x) \, dx = \sum_{i=1}^{n} \int_{z_i}^{z_{i+1}} f(x) \, dx \approx \sum_{i=1}^{n} Q_{NC}^{(i)}(m)
\]

which is the **composite quadrature rule** based on Newton-Cotes Results.
Composite Rules (2)

- For example, let $\Delta_i = z_{i+1} - z_i$ and $z_{i+1/2} = (z_i + z_{i+1})/2$ for $i = 1 : n$, if we apply the Simpson rule to each subinterval $[z_i, z_{i+1}]$ then we have a composite Simpson rule

$$Q_{\text{Simp}} = \sum_{i=1}^{n} \frac{\Delta_i}{6} (f(z_i) + 4f(z_{i+1/2}) + f(z_{i+1})).$$

- In general, if z houses a partition $[a, b]$ and fname is a string that names a function, then

```
numl = 0;
for i = 1 : length(z) - 1,
    numl = numl + QNC('fname', z(i), z(i + 1), m);
end
```

assigns to numl the the composite m-point Newton-Cotes estimate of the integral based on the partition housed in z.
Composite Rules (3)

- We next focus on composite rules that are based on uniformly partitions. In these rules, we have

\[z_i = a + (i - 1)\Delta, \quad \Delta = \frac{b - a}{n}, \quad i = 1 : n + 1. \]

- Thus the composite rule evaluation has the form:

\[
\begin{align*}
\text{numl} & = 0; \\
\text{Delta} & = (b - a)/n; \\
z & = a + [0 : n] * \text{Delta}; \\
\text{for } i = 1 : n, \\
\quad \text{numl} & = \text{numl} + \text{QNC}('fname', z(i), z(i + 1), m); \\
\text{end}
\end{align*}
\]

- This is the composite \(m\)-point Newton-Cotes rule with an \(n\)-subinterval partition, denoted as \(Q^{(n)}_{NC(m)}\).
However, the computation is a little *inefficient* since it involves $n - 1$ extra function evaluations and a *for-loop*. The rightmost f-evaluation in the ith call to QNC is the same as the leftmost f-evaluation in the $(i+1)$st call.

To avoid redundant f-evaluation and a *for*-loop with repeated function calls, it is better not to apply QNC to each n subintervals.

Instead, we pre-compute all the required function evaluations and store them in a single vector $fval(1: n \times (m - 1) + 1)$. The linear combination that defines the composite rule is then calculated.
In the preceding $Q_{NC(5)}^{(4)}$ example, the 17 required function evaluations are assembled in $fval(1:17)$ If w is the weight vector for $Q_{NC(5)}$, then

$$Q_{NC(5)}^{(4)} = \Delta (w^T fval(1:5) + w^T fval(5:9) + w^T fval(9:13) + w^T fval(13:17)).$$

This concludes that $Q_{NC(m)}^{(n)}$ is a summation of n inner products, each of which involves the weight vector w of the underlying rule and a portion of the $fval$-vector (see compQNC.m).
Error of the Composite Newton-Cotes Rules (1)

Suppose Q_i is the m-point Newton-Cotes estimate of the ith subinterval. If this rule is exact for polynomial of degree d, then using Eq.(4.2) we obtain

$$
\int_a^b f(x) \, dx = \sum_{i=1}^n \int_{z_i}^{z_{i+1}} f(x) \, dx = \sum_{i=1}^n \left(Q_i + c_m f^{(d+1)}(\eta_i) \left(\frac{z_{i+1} - z_i}{m-1} \right)^{d+2} \right).
$$

By definition

$$
Q_{NC(m)}^{(n)} = \sum_{i=1}^n Q_i \quad \text{and} \quad z_{i+1} - z_i = \Delta = \frac{b-a}{n}.
$$

Moreover, it can be shown that

$$
\frac{1}{n} \sum_{i=1}^n f^{(d+1)}(\eta_i) = f^{(d+1)}(\eta) \quad \text{for some} \quad \eta \in [a, b].
$$
Error of the Composite Newton-Cotes Rules (2)

We hence have

\[\int_a^b f(x) \, dx = Q_{\text{NC}}^{(n)}(m) + c_m \left(\frac{b - a}{n(m - 1)} \right)^{d+2} \cdot nf^{(d+1)}(\eta). \]

If \(|f^{(d+1)}(x)| \leq M_{d+1}\) for all \(x \in [a, b]\), then

\[
\left| Q_{\text{NC}}^{(n)}(m) - \int_a^b f(x) \, dx \right| \leq \left| c_m M_{d+1} \left(\frac{b - a}{m - 1} \right)^{d+2} \right| \frac{1}{n^{d+1}}.
\]

Comparing with (4.3), we see that the error in composite rule is the error in corresponding simple rule divided by \(n^{d+1}\). Then, with \(m\) fixed it is possible to exercise error control by choosing \(n\) sufficiently large.
Error of the Composite Simpson Rule

For example, suppose we want to approximate the integral with a uniformly spaced composite Simpson rule so that the error is less than a prescribed tolerance tol. If we know that $|f^{(4)}(x)| \leq M_4$, then we choose n so that

$$
\frac{1}{90} M_4 \left(\frac{b - a}{2} \right)^5 \frac{1}{n^4} \leq tol.
$$

To keep the number of f-evaluations as small as possible, n should be the smallest positive integer that satisfies

$$
n \geq (b - a)^4 \sqrt{\frac{M_4(b - a)}{2880 \cdot tol}}
$$

Exercising the script file `ShowCompQNC.m`, you will see the error properties of the composite Newton-Cotes rules.
Adaptive Quadrature Methods

- Uniformly spaced composite rules that are exactly for degree d polynomials are efficient if $f^{(d+1)}$ is uniformly behaved across $[a, b]$. However, if the magnitude of $f^{(d+1)}$ varies widely across the interval of integration, then the error control process discussed in Sec. 4.2 may result in an unnecessary number of function evaluations.

- This is because n is determined by an interval-wide derivative bound M_{d+1}. In regions where $f^{(d+1)}$ is small compared to this value, the subintervals are (possibly) much shorter than necessary.

- Adaptive quadrature methods can resolve this problem by ’discovering’ where the integrand is ill-behaved and shortening the subintervals accordingly.
The **adaptive Newton-Cotes procedure** is *similar to* the one we developed for **adaptive piecewise linear interpolation**. In order to obtain a good partition of \([a, b]\), we need to be able to estimate error. If the error is not small enough, then the partition should be refined.

We first fix \(m\) (the same point rule) and develop a method for estimating the error: Let \(A_1 = Q^{(1)}_{NC(m)}\) and \(A_2 = Q^{(2)}_{NC(m)}\), where \(A_1\) is the simple \(m\)-point rule estimate and \(A_2\) is the two-subinterval, \(m\)-point rule estimate.
An Adaptive Newton-Cotes Procedure (2)

- If these rules are exact for degree \(d \) polynomials, then it can be shown that

\[
I = A_1 + \left[c_m f^{(d+1)}(\eta_1) \left(\frac{b-a}{m-1} \right)^{d+2} \right]
\]

\[
I = A_2 + \left[c_m f^{(d+1)}(\eta_2) \left(\frac{b-a}{m-1} \right)^{d+2} \right] \frac{1}{2^{d+1}}
\]

where \(\eta_1 \) and \(\eta_2 \) are in the interval \([a, b]\).

- We now assume that \(f^{(d+1)}(\eta_1) = f^{(d+1)}(\eta_2) \), which is reasonable if \(f^{(d+1)} \) does not vary much on \([a, b]\). Thus, it can be written as

\[
I = A_1 + C, \quad \text{and} \quad I = A_2 + \frac{C}{2^{d+1}}, \quad C = \left[c_m f^{(d+1)}(\eta_1) \left(\frac{b-a}{m-1} \right)^{d+2} \right].
\]
By subtracting these two equations for \(I \) from each other and solving for \(C \), we obtain

\[
C = \frac{A_2 - A_1}{1 - 1/2^{d+1}} \quad \text{and} \quad |I - A_2| \approx \frac{|A_2 - A_1|}{2^{d+1} - 1}.
\]

Thus, this discrepancy provides a reasonable estimate of the error in \(A_2 \). If our goal is to approximate \(I \) that has absolute error \(tol \) or less, then the recursive procedure may be organized as \texttt{AdaptQNC.m}.
An Adaptive Newton-Cotes Procedure (4)

- If the heuristic estimate of the error is greater than tol, then two recursive call are initiated to obtain the approximations

 $$Q_L \approx \int_{a}^{\text{mid}} f(x) \, dx = I_L \quad \text{and} \quad Q_R \approx \int_{\text{mid}}^{b} f(x) \, dx = I_L$$

 that satisfy

 $$|I_L - Q_L| \leq \frac{tol}{2} \quad \text{and} \quad |I_R - Q_R| \leq \frac{tol}{2}$$

- Setting $Q = Q_L + Q_R$, we see that

 $$|I - Q| = |(I_L - Q_L) + (I_R - Q_R)| \leq |I_L - Q_L| + |I_R - Q_R| \leq \frac{tol}{2} + \frac{tol}{2} = tol.$$

- The script file `ShowAdapts.m` illustrates the behavior of `AdaptQNC.m` for various of tolerance and m.

An Adaptive Newton-Cotes Procedure (5)

- Notes: the script `ShowAdapts` uses MATLAB’s *global variable capability* in order to report on the *number of function evaluations* that are required for each `AdaptQNC` call.

- The command

  ```matlab
  global FunEvals VecFunEvals
  ```

 designates `FunEvals` and `VecFunEvals` as *global variables*. They ’sit’ in the MATLAB *workspace* and are *accessible by any function* that also designates the two variables as *global*.
MATLAB has two adaptive quadrature procedures, `quad.m` and `quad8.m`. The first is based on \(Q_{NC(3)} \) (Simpson’s rule) and the second on \(Q_{NC(9)} \).

We look at `quad.m`. As for `quad8.m`, the calling sequence is identical. A call of the form

\[
Q = \text{quad}('f', a, b)
\]

assigns to \(Q \) an estimate of the integral of \(f(x) \) from \(a \) to \(b \). The default relative error tolerance is \(10^{-6} \) (MATLAB 6).

Otherwise, a fourth input parameter can be used to specify the required tolerance. For example,

\[
Q = \text{quad}('f', a, b, tol)
\]
MATLAB’s Numerical Integrators (2)

- A fifth nonzero parameter can be used to produce a plot of f that reveals where it is evaluated by quad:
 \[
 Q = \text{quad}('f', a, b, \text{tol}, 1)
 \]

- The **number of function evaluations** can be obtained by specifying a *second output parameter*:
 \[
 [Q, \text{count}] = \text{quad}('f', a, b, \text{tol}, 1)
 \]

- In the script file **ShowQuads.m**, these two procedures are applied to the integral of the built-in MATLAB function **humps** that implements
 \[
 \text{humps}(x) = \frac{1}{(x - 0.3)^2 + 0.01} + \frac{1}{(x - 0.9)^2 + 0.04} - 6
 \]
 on $[0, 1]$.

It is sometimes the case that the integrand depends on one or more parameters. For example, suppose we want to compute

\[G(\alpha, \beta) = \int_0^1 e^{\alpha x} \sin(\beta \pi x) \, dx \]

for various \(\alpha \) and \(\beta \).

In this case we would start by writing a function that includes the parameters as arguments, e.g.,

```matlab
function y = F4-3-2(x, alpha, beta)
    y = exp(alpha * x) .* sin(beta * pi * x);
end
```
We here discuss two other approaches to the quadrature problem. \textbf{Gauss quadrature} is useful in certain specialized settings, as \textit{when there are endpoint singularities}.

In situations where the \textit{functions evaluations are experimentally determined}, \textbf{spline quadrature} has a certain appeal.
In the **Newton-Cotes** framework, the integrand is sampled at *regular intervals across* $[a, b]$. For m-point rule, the Newton-Cotes method is *exact* for the degree m (or $m + 1$) polynomials.

In the **Gauss quadrature**, the *abscissas* are positioned in such a way so that the rule is *correct (exact) for polynomials of maximal degree* (up to $2m − 1$).

This means, Gauss quadrature chooses the *optimal points* for f-evaluation, rather than *equally spaced way*.
Gauss Quadrature (Continuing)

- The nodes $x_1, x_2, \ldots, x_m \in [a, b]$, and weights w_1, w_2, \ldots, w_m are chosen to minimize the expected error in performing the approximation

$$\int_a^b f(x) \, dx \approx \sum_{k=1}^{m} w_k f(x_k)$$

for an arbitrary integrable function f.

- The simplest Gaussian rule is the two-point rule: Let us to determine the abscissas x_1, x_2 and weights w_1, w_2 so that

$$w_1 f(x_1) + w_2 f(x_1) = \int_{-1}^{1} f(x) \, dx$$

for polynomials of degree 3 ($= 2(2) - 1$) or less.
This means that the rule must be exact for the functions $1, x, x^2, \text{and } x^3$ and we obtain the equations
\[
\begin{align*}
w_1 + w_2 &= 2 \\
w_1 x_1 + w_2 x_2 &= 0 \\
w_1 x_1^2 + w_2 x_2^2 &= 2/3 \\
w_1 x_1^3 + w_2 x_2^3 &= 0.
\end{align*}
\]
By solving the system of 4 equations, we get $x_2 = -x_1 = 1/\sqrt{3}$ and $w_1 = w_2 = 1$. Thus, for any function $f(x)$ we have
\[
\int_{-1}^{1} f(x) \, dx = f(-1/\sqrt{3}) + f(1/\sqrt{3}).
\]
This is the two-point Gauss-Legendre rule.
The \(m \)-point Gauss-Legendre rule has the form

\[
Q_{GL(m)} = w_1 f(x_1) + \cdots + w_m f(x_m),
\]

where the \(x_i \) and \(w_i \) are chosen to make the rule exact for polynomials of degree \(2m - 1 \).

One way to determine the \(m \) nodes \((x_i) \) and \(m \) weights \((w_i) \) is by solving the \(2m \) nonlinear equations

\[
w_1 x_1^k + \cdots + w_m x_m^k = \frac{1 - (-1)^{k+1}}{k + 1}, \quad k = 0 : 2m - 1.
\]

The \(k \)th equation is obtained by the requirement that the rule

\[
w_1 f(x_1) + \cdots + w_m f(x_m) = \int_{-1}^{1} f(x) \, dx
\]

be exact for \(f(x) = x^k \). It has a unique solution.
This technique could be used to determine the nodes and weights for any m-point formula that give exact results for polynomials of degree $2m - 1$ or less. However, an alternative method can be used to obtain the nodes and weights more easily by applying the roots of orthogonal polynomials.

A family of orthogonal polynomials $\{p_0(x), p_1(x), ..., p_n(x), ...\}$, defined on $[a, b]$, has the property (inner product) that

$$< p_i(x), p_j(x) > = \int_a^b p_i(x) p_j(x) \, dx = \begin{cases} 0, & \text{if } i \neq j, \\ C_i, & \text{if } i = j, \text{ where } C_i \text{ constant}. \end{cases}$$
For example, one of the most famous \textit{orthogonal polynomial families} is the \textbf{Legendre polynomials} defined on \([-1, 1]\), the first few Legendre polynomials are

\begin{align*}
p_0(x) &= 1, \quad p_1(x) = x, \quad p_2(x) = x^2 - \frac{1}{3}, \\
p_3(x) &= x^3 - \frac{3}{5}x, \quad p_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}, \ldots, \text{etc.}
\end{align*}

The rule using the \textit{roots of Legendre polynomials} as notes and their corresponding weights is called \textbf{Gauss-Legendre quadrature}, which is defined as the following theorem.
Gauss-Legendre Theorem

Theorem: Suppose that x_1, x_2, \ldots, x_m are the roots of the nth Legendre polynomials $p_n(x)$ and that for each $i = 1 : m$, the weights w_i are defined by

$$w_i = \int_{-1}^{1} \prod_{\substack{j=1 \atop j \neq i}}^{m} \frac{x - x_j}{x_i - x_j} dx.$$

If $f(x)$ is any polynomial of degree less than $2m$, then

$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{m} w_i f(x_i)$$

For example, the **two-point rule** is using the roots of $p_2(x) = x^2 - \frac{1}{3} \left(\pm 1 / \sqrt{3} \right)$ and their corresponding weights $w_1 = w_2 = 1$.

FuSen Lin
Numerical Integration
The three-point rule is using the roots of \(p_3(x) = x^3 - \frac{3}{5}x \) (0 and \(\pm \sqrt{\frac{3}{5}} \)) and their corresponding weights \(w_1 = w_3 = \frac{5}{9} \) and \(w_2 = \frac{8}{9} \). That is,

\[
\int_{-1}^{1} f(x) \, dx \approx \frac{5}{9} f \left(-\sqrt{\frac{3}{5}} \right) + \frac{8}{9} f(0) + \frac{5}{9} f \left(\sqrt{\frac{3}{5}} \right).
\]

The rule, defined on \([-1, 1]\),

\[
Q_{\text{GL}(m)} = w_1 f(x_1) + \cdots + w_m f(x_m) \approx \int_{-1}^{1} f(x) \, dx
\]

can easily be transformed into any definite integrals on \([a, b]\), by a change of variable:

\[
\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} \int_{-1}^{1} g(x) \, dx, \quad g(x) = f \left(\frac{a+b}{2} + \frac{b-a}{2} x \right).
\]
It can be shown that

\[
\left| \int_a^b f(x) \, dx - Q_{GL}(m) \right| \leq \frac{(b - a)^{2m+1}(m!)^4}{(2m + 1)[(2m)!]^3} M_{2m},
\]

where \(M_{2m} \) is a constant that bounds \(|f^{(2m)}|\) on \([a, b]\).

The script file \texttt{GLvsNC.m} compares the \(Q_{GL}(m) \) and \(Q_{NC}(m) \) rules when they are applied to the integral of \(\sin(x) \) from 0 to \(\pi/2 \).
Spline Quadrature

Suppose $S(x)$ is a **cubic spline interpolant** of (x_i, y_i), $i = 1 : n$ and that we wish to compute $I = \int_{x_1}^{x_n} S(x) \, dx$. If the *ith local cubic* is represented by

$$q_i(x) = \rho_{i,4} + \rho_{i,3}(x - x_i) + \rho_{i,2}(x - x_i)^2 + \rho_{i,1}(x - x_i)^3,$$

then

$$\int_{x_i}^{x_{i+1}} q_i(x) \, dx = \rho_{i,4} h_i + \frac{\rho_{i,3}}{2} h_i^2 + \frac{\rho_{i,2}}{3} h_i^3 + \frac{\rho_{i,1}}{4} h_i^4,$$

where $h_i = x_{i+1} - x_i$.

By *summing these quantities* from $i = 1 : n - 1$, we obtain the sought after spline integral. The function `SplineQ.m` in MATLAB can be used for spline quadrature.

The script file `ShowSplineQ.m` uses this function to produce the estimates for the integral of $\sin(x)$ from 0 to $\pi/2$.