Data and Computer Communications

Chapter 15 – Local Area Network Overview

Eighth Edition
by William Stallings
LAN Applications (1)

- personal computer LANs
 - low cost
 - limited data rate
- back end networks
 - interconnecting large systems (mainframes and large storage devices)
 - high data rate
 - high speed interface
 - distributed access
 - limited distance
 - limited number of devices
LAN Applications (2)

- storage area networks (SANs)
 - separate network handling storage needs
 - detaches storage tasks from specific servers
 - shared storage facility
 - eg. hard disks, tape libraries, CD arrays
 - accessed using a high-speed network
 - eg. Fibre Channel
 - improved client-server storage access
 - direct storage to storage communication for backup
Storage Area Networks

(a) Server-based storage

(b) Storage area network
LAN Applications (3)

- high speed office networks
 - desktop image processing
 - high capacity local storage

- backbone LANs
 - interconnect low speed local LANs
 - reliability
 - capacity
 - cost
LAN Architecture

• Key elements of a LAN
 – topologies
 – transmission medium
 – wiring layout
 – medium access control

• These elements determine
 – Cost and capacity of the LAN
 – Type of data that may be transmitted
 – Speed and efficiency of communications
 – Kinds of applications that can be supported
LAN Topologies

(a) Bus

(b) Tree

(c) Ring

(d) Star
Bus and Tree

- used with multipoint medium
- transmission propagates throughout medium
- heard by all stations
- full duplex connection between station and tap
 - allows for transmission and reception
- need to regulate transmission
 - to avoid collisions and hogging
- terminator absorbs frames at end of medium
- tree a generalization of bus
- headend connected to branching cables
Frame Transmission on Bus LAN

C transmits frame addressed to A

Frame is not addressed to B; B ignores it

A copies frame as it goes by
Bidirectional Transmission (baseband transmission)
Broadband Transmission Using Two Frequencies, One Bus
Broadband Transmission Using One Frequency, Two Buses
Ring Topology

- a closed loop of repeaters joined by point to point links
- receive data on one link & retransmit on another
 - links unidirectional
 - stations attach to repeaters
- data in frames
 - circulate past all stations
 - destination recognizes address and copies frame
 - frame circulates back to source where it is removed
- media access control determines when a station can insert frame
Frame Transmission
Ring LAN

(a) C transmits frame addressed to A

(b) Frame is not addressed to B; B ignores it

(c) A copies frame as it goes by

(d) C absorbs returning frame
Star Topology

- each station connects to central node
 - usually via two point to point links
- either central node can broadcast
 - physical star, logical bus
 - only one station can transmit at a time
- or central node can act as frame switch
Star Topology
Using a Hub in a Star Topology
Using a Switch in a Star Topology

Keep the data

Chap15:18
Choice of Topology

- reliability
- expandability
- performance
- needs considering in context of:
 - medium
 - wiring layout
 - access control
Chap15:20

Bus LAN
Transmission Media (1)

• twisted pair
 – early LANs used voice grade cable
 – didn’t scale for fast LANs
 – not used in bus LANs now

• baseband coaxial cable
 – uses digital signalling
 – original Ethernet

Chap15:20
Bus LAN
Transmission Media (2)

• broadband coaxial cable
 – as in cable TV systems
 – analog signals at radio frequencies
 – expensive, hard to install and maintain
 – no longer used in LANs

• optical fiber
 – expensive taps
 – better alternatives available
 – not used in bus LANs

• less convenient compared to star topology twisted pair

• coaxial baseband still used but not often in new installations
Ring and Star Usage

• **ring**
 – very high speed links over long distances
 – single link or repeater failure disables network

• **star**
 – uses natural layout of wiring in building
 – best for short distances
 – high data rates for small number of devices
Choice of Medium

• constrained by LAN topology
• capacity
• reliability
• types of data supported
• environmental scope
Media Available

- Voice grade unshielded twisted pair (UTP)
 - Cat 3 phone, cheap, low data rates
- Shielded twisted pair / baseband coaxial
 - more expensive, higher data rates
- Broadband cable
 - even more expensive, higher data rate
- High performance UTP
 - Cat 5+, very high data rates, witched star topology
- Optical fibre
 - security, high capacity, small size, high cost
IEEE 802 Layers (1)

- Physical
 - encoding/decoding of signals
 - preamble generation/removal
 - bit transmission/reception
 - transmission medium and topology
IEEE 802 Layers (2)

• Logical Link Control
 – interface to higher levels
 – flow and error control

• Media Access Control
 – on transmit assemble data into frame
 – on receive disassemble frame
 – govern access to transmission medium
 – for same LLC, may have several MAC options
LAN Protocols in Context

Application data

TCP segment

IP datagram

LLC protocol data unit

MAC frame
Logical Link Control

- transmission of link level PDUs between stations
- must support multiaccess, shared medium
- but MAC layer handles link access details
- addressing involves specifying source and destination LLC users
 - referred to as service access points (SAP)
 - typically higher level protocol
Media Access Control

• where
 – central
 • greater control, single point of failure
 – distributed
 • more complex, but more redundant

• how
 – synchronous
 • capacity dedicated to connection, not optimal
 – asynchronous
 • in response to demand
Asynchronous Systems

- **round robin**
 - each station given turn to transmit data

- **reservation**
 - divide medium into slots
 - good for stream traffic

- **contention**
 - all stations contend for time
 - good for bursty traffic
 - simple to implement
 - tends to collapse under heavy load
MAC Frame Handling

• MAC layer receives data from LLC layer
• fields
 – MAC control
 – destination MAC address
 – source MAC address
 – LLC
 – CRC
• MAC layer detects errors and discards frames
• LLC optionally retransmits unsuccessful frames
Bridge Function

Frames with addresses 11 through 20 are accepted and repeated on LAN B.

Frames with addresses 1 through 10 are accepted and repeated on LAN A.
Bridge Design Aspects

- no modification to frame content or format
- no encapsulation
- exact bitwise copy of frame
- minimal buffering to meet peak demand
- contains routing and address intelligence
- may connect more than two LANs
- bridging is transparent to stations
Bridge Protocol Architecture

- IEEE 802.1D
- MAC level
- bridge does not need LLC layer
- can pass frame over external comms system
 - capture frame
 - encapsulate it
 - forward it across link
 - remove encapsulation and forward over LAN link
 - e.g. WAN link
Connection of Two LANs

(a) Architecture

(b) Operation
Interconnected via WAN

- LANs are interconnected via the WAN.
Bridges and LANs with Alternative Routes
Fixed Routing

- complex large LANs need alternative routes
 - for load balancing and fault tolerance
- bridge must decide whether to forward frame
- bridge must decide LAN to forward frame to
- can use fixed routing for each source-destination pair of LANs
 - done in configuration
 - usually least hop route
 - only changed when topology changes
 - widely used but limited flexibility
Spanning Tree

- bridge automatically develops routing table
- automatically updates routing table in response to changes
- three mechanisms:
 - frame forwarding
 - address learning
 - loop resolution
Frame Forwarding

• maintain forwarding database for each port
 – lists station addresses reached through each port
• for a frame arriving on port X:
 – search forwarding database to see if MAC address is listed for any port except X
 – if address not found, forward to all ports except X
 – if address listed for port Y, check port Y for blocking or forwarding state
 – if not blocked, transmit frame through port Y
Address Learning

• can preload forwarding database
• when frame arrives at port X, it has come form the LAN attached to port X
• use source address to update forwarding database for port X to include that address
• have a timer on each entry in database
• if timer expires, entry is removed
• each time frame arrives, source address checked against forwarding database
 – if present timer is reset and direction recorded
 – if not present entry is created and timer set
Filtering Database Examples
Forwarding and Address Learning Algorithm
Address Learning Example

1. A -> E
2. B -> D
3. C -> B
4. D -> A
5. E -> C
Address Learning Example (A→E)
Address Learning Example (B→D)
Address Learning Example (C→B)
Address Learning Example (D→A)
Address Learning Example (E → C)
Loop of Bridges

• Loops provides reliability
• Loops make frames duplication
• Loops make wrong address learning
Spanning Tree Algorithm

• address learning works for tree layout
• in general graph have loops
• for any connected graph there is a spanning tree maintaining connectivity with no closed loops
• IEEE 802.1 Spanning Tree Algorithm finds this
 – each bridge assigned unique identifier
 – exchange info between bridges to find spanning tree
 – automatically updated whenever topology changes
Internetworking Devices

<table>
<thead>
<tr>
<th>連結設備</th>
<th>實體層</th>
<th>鏈結層</th>
<th>網路層</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAC</td>
<td>LLC</td>
<td>以上</td>
</tr>
<tr>
<td>訊號增益器</td>
<td>相同</td>
<td>相同</td>
<td>相同</td>
</tr>
<tr>
<td>橋接器</td>
<td>不同</td>
<td>不同</td>
<td>相同</td>
</tr>
<tr>
<td>路徑器</td>
<td>不同</td>
<td>不同</td>
<td>不同</td>
</tr>
<tr>
<td>網路閘門</td>
<td>不同</td>
<td>不同</td>
<td>不同</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>連結設備</th>
<th>實際網路個數</th>
<th>邏輯網路個數</th>
</tr>
</thead>
<tbody>
<tr>
<td>訊號增益器</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>橋接器</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>路徑器</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>網路閘門</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
Interconnecting LANs - Hubs

- active central element of star layout
- each station connected to hub by two UTP lines
- hub acts as a repeater
- limited to about 100 m by UTP properties
- optical fiber may be used out to 500m
- physically star, logically bus
- transmission from a station seen by all others
- if two stations transmit at the same time have a collision
Two Level Hub Topology

- HHUB
 - IHUB
 - Station
 - Station
 - Station
 - IHUB
 - Station

Two cables (twisted pair or optical fiber)

Transmit

Receive
Buses, Hubs and Switches

• bus configuration
 – all stations share capacity of bus (e.g. 10Mbps)
 – only one station transmitting at a time
• hub uses star wiring to attach stations
 – transmission from any station received by hub and retransmitted on all outgoing lines
 – only one station can transmit at a time
 – total capacity of LAN is 10 Mbps
• can improve performance using a layer 2 switch
 – can switch multiple frames between separate ports
 – multiplying capacity of LAN
Shared Medium Bus and Hub
Layer 2 Switch Benefits

• no change to attached devices to convert bus LAN or hub LAN to switched LAN
 – e.g. Ethernet LANs use Ethernet MAC protocol
• have dedicated capacity equal to original LAN
 – assuming switch has sufficient capacity to keep up with all devices
• scales easily
 – additional devices attached to switch by increasing capacity of layer 2
Types of Layer 2 Switch

- **store-and-forward switch**
 - accepts frame on input line, buffers briefly, routes to destination port
 - see delay between sender and receiver
 - better integrity

- **cut-through switch**
 - use destination address at beginning of frame
 - switch begins repeating frame onto output line as soon as destination address recognized
 - highest possible throughput
 - risk of propagating bad frames
Layer 2 Switch vs Bridge

- Layer 2 switch can be viewed as full-duplex hub
- incorporates logic to function as multiport bridge
- differences between switches & bridges:
 - bridge frame handling done in software
 - switch performs frame forwarding in hardware
 - bridge analyzes and forwards one frame at a time
 - switch can handle multiple frames at a time
 - bridge uses store-and-forward operation
 - switch can have cut-through operation
- hence bridge have suffered commercially
Layer 2 Switch Problems

• broadcast overload
 – users share common MAC broadcast address
 – broadcast frames are delivered to all devices connected by layer 2 switches and/or bridges
 – broadcast frames can create big overhead
 – broadcast storm from malfunctioning devices

• lack of multiple links
 – limits performance & reliability
Router Problems

• typically use subnetworks connected by routers
 – limits broadcasts to single subnet
 – supports multiple paths between subnet

• routers do all IP-level processing in software
 – high-speed LANs and high-performance layer 2 switches pump millions of packets per second
 – software-based router only able to handle well under a million packets per second
Layer 3 Switches

• Solution: layer 3 switches
 – implement packet-forwarding logic of router in hardware

• two categories
 – packet by packet
 – flow based
Packet by Packet or Flow Based

- **packet by packet**
 - operates like a traditional router
 - order of magnitude increase in performance compared to software-based router

- **flow-based switch**
 - enhances performance by identifying flows of IP packets with same source and destination
 - by observing ongoing traffic or using a special flow label in packet header (IPv6)
 - a predefined route is used for identified flows
Typical Large LAN Organization Diagram
Summary

- LAN topologies and media
- LAN protocol architecture
- bridges, hubs, layer 2 & 3 switches